SPICE MODEL AND PWM AMPLIFIER APPLICATIONS

APPLICATION NOTE 33

PULSE WIDTH MODULATION AMPLIFIER
HTTP://WWW.APEXMICROTECH.COM (800) 546-APEX (800) 546-2739

PWM AMPLIFIER INTRODUCTION

The recent availability of high-voltage and high-current PWM amplifiers in hybrid packages has attracted the interest of many designers who traditionally use linear amplifiers. The advantage of PWM amplifiers is obvious: efficiency of 70 to 97%. High efficiency translates to lower internal power loss, smaller heat sinks, and reduced overall physical size.

To make it easier to design with these amplifiers, a simple and versatile generic PWM Spice model lets you check out PWM waveforms without the fear of blowing up the amplifiers or getting shocked by high voltages. The methodology behind generating such a model applies not only to hybrid PWM amplifiers, but also to monolithic and discrete PWM amplifiers. The inputs to the model come from the PWM amplifier's data sheet, and you can run the model on any commercial Spice program.

Even though a PWM amplifier offers analog signals in and analog signals out, its circuit functionality is entirely different from a linear amplifier's. A PWM amplifier modulates a pulse train in the time domain and uses LC filtering to extract the analog-signal output. You can use PWM amplifiers to emulate

FIGURE 1. A PWM amplifier (a) converts an analog signal into a pulse train of variable duty cycle (b). AOUT and BOUT can directly drive a dc motor, but most other loads require additional LC filtering.
linear constant- voltage amplifiers or linear constant-current amplifiers, both at much higher levels of efficiency

If you're unfamiliar with how a PWM amplifier works, you're not alone. Just like op amps, PWM amplifiers come in many sizes and flavors, some with fancy bells and whistles. Fortunately, the amplifiers all operate under the same principle.

A PWM amplifier converts an analog signal into a pulse train of variable duty cycle. The analog input controls the duty cycle of the output pulse train, which switches on and off once during each cycle. When a high output is necessary, the pulse train switches on most of the time and vice versa.

Figure 1a shows a basic PWM amplifier. Vin is the analog input of 1 to 8 V dc. AOUT is a pulse train, and BOUT is its inverse. The PWM oscillator determines the frequency of the pulse train, and some PWM amplifiers allow you to put in your own PWM oscillator. As Vin changes from its minimum to its maximum value, the duty cycle of AOUT changes from 0 to 100%, and the duty cycle of BOUT changes from 100 to 0%. The difference voltage of AOUT-BOUT has the same pulse train as AOUT but with double the amplitude of 2 xVs p-p (Figure 1b).

If you connect a dc brush-type motor across AOUT and BOUT, you can control the motor speed with Vin. When you set Vin in the middle of its range, for 50% duty cycle at AOUT and BOUT, the motor stands still. With Vin at its maximum, the motor turns at maximum rpm; with Vin at its minimum, the motor reverses direction of rotation and turns at maximum rpm again. You can directly connect AOUT and BOUT to a motor because the winding inductance of the motor turns the pulsed voltage into a rippled dc current whose magnitude controls the motor speed and whose polarity controls the clockwise or counterclockwise direction of the motor. As Figure 1a indicates, most other applications need LC filters to filter out the PWM pulse train to ensure that an analog signal appears at the load.

USE A GENERIC SPICE MODEL

Figure 2 shows the generic Spice subcircuit model of a PWM amplifier. V1 is a ramp of fixed frequency. E1 serves as a comparator that converts the PWM ramp as it crosses Vin

FIGURE 2. A generic Spice model of a PWM amplifier includes a fixed-frequency ramp (V1), a comparator (E1), an inverter (X1), and MOSFET drivers (S1 to S4) and their respective on-resistances(R1 to R4).
into a variable-dutycycle pulse train (Figure 3). S5, V5, S6, and V6 limit the amplitude of the pulse train to $\pm 5 \mathrm{~V}$. S1/R1, S2/R2, S3/R3, and S4/R4 represent the four MOSFET drivers for which R1, R2, R3, and R4 are the respective on-resistances. The four MOSFETs always turn on and off in diagonal sets, that is, when S1 and S4 are on, S2 and S3 are off and vice versa. The inverter X1 provides the diagonal switching control. ISENSE A and ISENSE B are current-sensing terminals, usually available at two output pins for current-feedback control circuitry. For open-loop operation or for voltage-feedback control, just connect ISENSE A and ISENSE B to ground.

FIGURE 3. In the PWM amplifier model, E1 serves as a comparator that converts the PWM ramp as it crosses Vin into a variable duty cycle pulse train.
When an external load connects between AOUT and BOUT, current flows from Vs to ground through one of two routes: Vs to S1/R1, to an externally connected load between AOUT and BOUT, to S4/R4, and then to ground or Vs to S3/R3, to the external load, to S2/R2, and finally to ground. The voltage across the load actually doubles the Vs voltage. For example, when Vs $=100 \mathrm{~V}$, the voltage across the load is 200 V pp. This voltage-doubling feature is another advantage PWM amplifiers offer for high-voltage applications. To double voltage using linear amplifiers you must use two linear amplifiers in a bridge-mode configuration.

FIGURE 4. The analog input-voltage range and the switching frequency (in this case, 4 to 8 V and 45 kHz , respectively) determine the wave form of the PWM ramp.

DESIGN EXAMPLE: CONSTANT-CURRENT AMPLIFIER

You commonly use constant-current amplifiers for applications such as motor-torque control and battery chargers. You can use the model and the specifications of a commercial PWM amplifier-in this case, the Apex SA50-to design a constant-current amplifier (also called a voltage-to-current converter). You start out with the following specifications from the SA50 data sheet:

FIGURE 5. Combining the generic Spice model with the specifications for the SA50 PWM amplifier, you can use the model to simulate a voltage-controlled, constant-current amplifier.

Analog input voltage/output duty cycles:
Vin=4V; AOUT=0\% and BOUT=100\%
Vin=6V; AOUT=50\% and BOUT=50\%
Vin $=8 \mathrm{~V}$; AOUT $=100 \%$ and BOUT $=0 \%$
switching frequency: 45 kHz .
MOSFET on-resistance: 0.5Ω total or 0.25Ω each
The analog input voltage range of 4 to 8 V dc and the switching frequency of 45 kHz determine the waveform of the PWM ramp (Figure 4), which V1 in Figure 2 produces. You can describe this waveform as a constant-voltage source in any commercial Spice program, such as Intusoft's Model ICAP/4Rx V8.8.1. You enter V1's parameters as manual-driven inputs, and this Spice program automatically generates the following statement for V1: V1 120 PULSE 480 11.1E-6 11.1E- 6 1E-12 22.2E-6, where "120" designates the two nodes for V1.

The MOSFET on-resistance of 0.25 V determines the values of R1, R2, R3, and R4. The addition of $R q=600 \Omega$ and Vcc=12V model the SA50 amplifier's quiescent current and the low-voltage power supply necessary to power the H -bridge drive circuitry.

Figure 5 shows the complete Spice subcircuit for the SA50. This basic SA50 can drive a bidirectional motor for which Vin controls the motor speed and direction of rotation. You can add LC filters that let you drive other loads. Even when driving a motor, LC filters next to the amplifier module are useful for EMI and EMC purposes. Without filters, the long cables to the motor carry high-voltage switching pulses and act as antennas. Because the waveform across AOUT and BOUT is a pulse train of variable duty cycle and because Vin, the analog input signal, controls the pulse train's duty cycle or pulse width, you must first filter the PWM pulse train to extract the analog output signal.

In Figure 5, the load comprises Rload and Lload. L1, C4, L3, and C 5 form a low pass filter with a cut off frequency (Fc) of 4.5 kHz to filter out the SA50 amplifier's $45-\mathrm{kHz}$ PWM pulse train. A rule of thumb is to set the LC filter's corner frequency one decade below the PWM frequency. Of course, you can push the corner frequency higher by using multiple-pole LC filters. The equations to calculate filter LC values are as follows:

$$
\begin{gather*}
\mathrm{L} 1=\mathrm{L} 3=\frac{1.4142 \cdot \mathrm{Rload}}{2 \pi \cdot \mathrm{Fc}} \cdot 0.5, \\
\text { and } \\
\mathrm{C} 4=\mathrm{C} 5=\frac{0.7071}{2 \pi \cdot \mathrm{Fc} \cdot \text { Rload }} \cdot 2 . \tag{2}
\end{gather*}
$$

Because of the filter's differential configuration, these equations include a $\times 0.5$ factor for L1 and L3 and a x2 factor for C4 and C5. In this example, Rload=16 , and $\mathrm{Fc}=4.5 \mathrm{kHz}$, so $\mathrm{L} 1=\mathrm{L} 3=400 \mu \mathrm{H}$, and $\mathrm{C} 4=\mathrm{C} 5=3.1 \mu \mathrm{~F}$. Because the load for this example is inductive, adding the matching network of R17 and C8 creates a combined load of 16Ω. The equations for R17 and C 8 are as follows:

$$
\begin{align*}
& \mathrm{R} 17=\text { Rload, } \tag{3}\\
& \mathrm{C} 8=\frac{\text { Lload }}{\text { Rload }^{2}} \tag{4}
\end{align*}
$$

In this example, Lload $=1 \mathrm{mH}$, and Rload $=16 \Omega$, so $\mathrm{C} 8=3.9$ μF, and $R 17=16 \Omega$. Similarly, if you have a capacitive load, you can use a LR matching network to make the combined load resistive, for which

$$
\begin{equation*}
\mathrm{L}=\text { Cload } \cdot \text { Rload }^{2} \tag{5}
\end{equation*}
$$

FIGURE 6. The LC filter's frequency response differs with and without the matching network.

Figure 6 shows the frequency response of the filter with and without the matching network. Ignoring the feedback circuitry of X 3 and X 4 , a 1 kHz 3.5 V p-p sine wave with 6 Vdc offset at Vin produces a 120 V pp sine wave across the load (Figure 7).

FIGURE 7. Ignoring the feedback circuitry of X 3 and X 4 , a $1-\mathrm{kHz}$, 3.5 V p-p sine wave with offset at Vin produces a 120 V $\mathrm{p}-\mathrm{p}$ sine wave across the load.

To complete the design of a constant-current amplifier, you must have some means of sensing the load current and provide feedback control in case of a load change. Ra and Rb are the two current-sensing resistors. Op amp X4 and its associated components serve two purposes: first, as a difference amplifier with a gain of 20 that converts the current difference between $R a$ and $R b$ into a voltage output of $-0.5 \mathrm{~A} / \mathrm{V}$ and, second, as a lowpass filter comprising C1, C2, C6, and C7 that filters the ripple currents in Ra and Rb with a corner frequency of 4.5 kHz . The design equations are as follows:

$$
\begin{align*}
& \mathrm{GAIN}=-\frac{\mathrm{R} 9}{\mathrm{R} 10 \cdot \mathrm{Ra}} \mathrm{~A} / \mathrm{V} \tag{6}\\
& \mathrm{C} 6=\mathrm{C} 7=\frac{1}{2 \pi \cdot \mathrm{R} 13 \cdot \mathrm{Fc}} \tag{7}\\
& \mathrm{C} 1=\mathrm{C} 2=\frac{1}{2 \pi \cdot \mathrm{R} 10 \cdot \mathrm{Fc}} \tag{8}
\end{align*}
$$

To minimize power losses, you should choose Ra and Rb values of 0.01 to 0.1Ω. In this example, $\mathrm{Fc}=4.5 \mathrm{kHz}, \mathrm{R} 8=\mathrm{R} 9=10$ $\mathrm{k} \Omega$. To minimize loading effects, these resistors must be much greater than R13=R15=100 . Substituting these values into

Equation 7 and Equation 8, $\mathrm{C} 6=\mathrm{C} 7=0.35 \mu \mathrm{~F}$, and $\mathrm{C} 1=\mathrm{C} 2=180$ pF . Choosing R10 $=200 \mathrm{k} \Omega$, Equation 6 yields a gain of -0.5 A/V.

X3 is an integrator that compares the error voltage from X4 with the input voltage Ein and provides the correct input voltage for the SA50 amplifier to close the feedback loop. The design equations for the integrator are as follows:

$$
\begin{equation*}
\mathrm{R} 12=\mathrm{R} 14 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C} 3=\frac{1}{2 \pi \cdot(0.05 \mathrm{Fc}) \cdot \mathrm{R} 12} \tag{10}
\end{equation*}
$$

You can complete the design by choosing R12=R14=10 k Ω and C3=71 nF (Figure 6).
You can now run the Spice program. The load current waveforms (Figure 8) are as expected. Note that there is a small error between the Spice output and the expected value.
For example, with Ein=10V, the expected output current should be -5 A , but Figure 8 shows -4.8 A . This difference is because of the loss resulting from the 0.25Ω MOSFET's onresistance. If you set the on-resistance to zero, you get exactly -5 A . Listing 1 is the complete Spice circuit description for the constant-current amplifier.

LISTING 1-SA50 CONSTANT-CURRENT-AMPLIFIER SPICE CIRCUIT

*\#save V(1) V(25) @R4[i] @R4[p] V(3) @R1[i] @R1[p] V(5)
*\#save V(29) @R3[i] @R3[p] V(7) V(19) @R2[i] @R2[p] V(9)
*\#save @VS[i] @Vs[p] V(10) @S4[i] @S4[p] V(11) @S2[i] @S2[p]
*\#save @S3[i] @S3[p] @S1[i] @S1[p] V(12) @V1[i] @V1[p] V(13)
*\#save V(18) @E1[i] @E1[p] @V5[i] @V5[p] V(8) @S6[i] @S6[p]
*\#save @V6[i] @V6[p] V(17) @Rload[i] @RIoad[p] @Lload[i] @Rb[i] @Rb[p]
*\#save @Ra[i] @Ra[p] V(16) V(14) V(20) V(21) @R8[] @R8[p]
*\#save @R9[i] @R9[p] @R10[i] @R10[p] @R11[i] @R11[p] @V3[i] @V3[p]
*\#save @C1[i] @C2[i] V(24) V(18) V(26) @R12[i] @R12[p] @VEin[i]
*\#save @VEin[p] @C3[i] @R14[i] @R14[p] @S5[i] @S5[p] V(15) V(30)
*\#save V(2) @L1[i] @L3[i] @C4[i] @C5[i] @R13[i] @R13[p] @C6[i]
*\#save @R15[i] @R15[p] @C7[i] $\mathrm{V}(23) \mathrm{V}(29) \mathrm{V}(6) \mathrm{V}(4) \mathrm{V}(21)$
*\#save V(22) @V2[i] @V2[p] V(27) @Vcc[i] @Vcc[p] @Rq[i] @Rq[p]
*\#save V(28) @R17[i] @R17[p] @C8[i] @Rload[i]
*\#VIEW TRAN Y1
*\#alias Y1 @RIoad[i]
.TRAN 22.2E-9 4000E-6 $022.2 \mathrm{E}-8$ UIC
.PRINT TRAN Y1
R4 1250.25
R1 3230.25
R35 290.25
R27 190.25
Vs 90 DC=80
S4 291100 _S4_mod
.MODEL_S4_mod SWVT=2.5 RON=1E-9 ROFF=1E9
S2237110_S2_mod
.MODEL_S2_mod SWVT=2.5 RON=1E-9 ROFF=1E9
S395110_S3_mod
.MODEL_S3_mod SW VT=2.5 RON=1E-9 ROFF=1E9
S1 39100 _S1_mod
.MODEL_S1_mod SWVT=2.5 RON=1E-9 ROFF=1E9
X1 1110 INV $\}$
.SUBCKT INV 12
*in out
B1 $30 \mathrm{~V}=\sim \mathrm{V}(1)$
RD321
CD 20.87 NF
.ENDS
V1 120 PULSE 480 11.1E-6 11.1E-6 1E-12 22.2E-6
E1 1301218 1E9
*\#save @E1[i] @E1[p]
L1 234400u
V5 150 DC=5
S6 1180 13_S6_mod
.MODEL_S6_mod SWVT=2.5 RON=1E-9 ROFF=1E9
V608DC=5
Rload 17616
V20 22 DC=12
Lload 4171 m
Rb 2500.1
Ra 1900.1
X4 1614202122 PA21 \{\}
.SUBCKT PA21 12345

* PINOUT ORDER +IN -IN OUT +V-V

Q1 10 18Q11

Q2 1129 Q12	R8 163010 K
R3 1287.39E+03	R9 14210 K
R41297.39E+03	R10 1420200 K
\|2 1253.61E-05	R11 160200K
C1 1252.73E-12	Vcc 270 DC= 12
R5 1251.11E+06	V3210 DC=12
R14 108.85E+03	C1 160 180p
R2 411 8.85E+03	C2 1420 180p
C2 1011 9.00E-12	Rq 270600
$11453.70 \mathrm{E}-02$	X30 24182122 PA21 \{\}
G16 $1511101.13 \mathrm{E}-04$	R12 2426 10K
G26 1512 156.36E-09	VEin 260 DC=10
R6 $6151.00 \mathrm{E}+05$	C3 182471n
D1615DD	S5 1511 130_S5_mod
D2 156 DD	.MODEL_S5_mod SW VT=2.5 RON=1E-9 ROFF=1E9
C3673.00E-11	L3 296400 u
G3 $1571568.85 \mathrm{E}+00$	R14 2420 10K
R77 15 1E3	C4403.1u
D3716 DD	C5063.1u
V1 $18161.60 \mathrm{E}+00$	R1728616
D4177 DD	R133025 100
V2 $17191.60 \mathrm{E}+00$	C6 $3000.35 u$
RE1 1500.001	C84283.9u
E2 180401	R152 19100
E3 190501	C7 $200.35 u$
R872050	.END
C4 $20153.08 \mathrm{E}-09$	
Q3 192021 QOP	
Q4 182022 QON	
Q542329 QON	
Q652430 QOP	
Q7 252731 QLN	
Q8 262831 QLP	
R11 2123 1.70E-01	
RCLP 2931 1.70E-01	
RCLN 3031 1.70E-01	
R132224 1.70E-01	
D5 2325 DL	
D6 2624 DL	
R92729 1E3	
R10 28301 E 3	
$1318237.92 \mathrm{E}-03$	
1424 197.92E-03	
R15 313 5.42E-01	
RSN 3341	
CSN $3450.1 \mathrm{E}-6$	
.MODEL DD D(CJO=0.1PF IS=1E-17)	
.MODEL DL D(CJO=3PF IS=1E-13)	
.MODEL Q11 NPN (BF=6.55E+02 IS=8E-16)	
.MODEL Q12 NPN (BF=4.24E+02 IS=8.46E-16)	
.MODEL QOP PNP ($\mathrm{BF}=4.64 \mathrm{E}+02 \mathrm{IS}=1 \mathrm{E}-14$)	
.MODEL QON NPN (BF=4.64E+02 IS=1E-14)	
.MODEL QLN NPN (BF=100 IS=1E-14)	
.MODEL QLP PNP (BF=100 IS=1E-14)	
.ENDS	

R8 1630 10K
R9 142 10K
R10 1420 200K
Vcc 270 DC=12
V3 $210 \mathrm{DC}=12$
C1 160 180p R 270600
Rq 270600
R12 2426 10K
VEin 260 DC=10
C3 182471 n
.MODEL_S5_mod SWVT=2.5 RON=1E-9 ROFF=1E9
L3 $296400 u$
R14 2420 10K
C5403.1u
R1728616
R13 3025100
C6 $3000.35 u$

R15219100
C7200.35u
.END

C4 $20153.08 \mathrm{E}-09$
Q3 192021 QOP
Q4 182022 QON
Q5
Q65430
Q826
R11 2123 1.70E-01
RCLP 2931 1.70E-01
RCLN 3031 1.70E-01
R13 2224 1.70E-01
D5 2325 DL
D6 2624 DL
R927 29 1E3
$18237.92 \mathrm{E}-0$
1424 197.92E-03
R1531 35.42E-01
RSN 3341
CSN $3450.1 \mathrm{E}-6$
MODELDLD
MODEL DL D(CJO=3PF IS=1E-13)
Q1 NPN (BF=6.5SE-02/S=8E-16)
MODEL Q12 NPN (BF=4.24E+02 IS=8.46E-16)

.MODEL QLN NPN ($B F=100$ IS=1E-14)
MODEL QLP PNP ($\mathrm{BF}=100 \mathrm{IS}=1 \mathrm{E}-14$)
.ENDS

FIGURE 8. Spice-simulation runs indicate the load-current waveforms of the constant-current amplifier for various values of Ein.

CONSTANT-VOLTAGE AMPLIFIER

In applications such as audio-speaker drivers, motor-speed control, and power inverters, you need a constant voltage amplifier. You can use the Apex SA02 to design a high efficiency, high-power PWM audio-speaker driver. The SA02 data sheet lists the following specifications:

Analog input voltage/output duty cycles:
Vin=1.25V; AOUT=0\%, BOUT=100\%
$\mathrm{Vin}=2.50 \mathrm{~V}$; AOUT $=50 \%$, BOUT=50\%
$\mathrm{Vin}=3.75 \mathrm{~V}$; $\mathrm{AOUT}=100 \%$, BOUT=$=0 \%$
switching frequency: $250-\mathrm{kHz}$
MOSFET on-resistance: 0.42Ω total or 0.21Ω each.
The LC filter design is similar to that of the constant-current amplifier except the LC filter requires no matching network because of the 8Ω resistive load (Figure 9a). The SA02 ampli-
fier's PWM frequency is 250 kHz , so the design sets the LC filter's corner frequency to 25 kHz . The design of the difference amplifier (X4) is somewhat different, however. This constantvoltage amplifier configuration senses the output voltage, not the output current. The voltage at AOUT and BOUT is much higher than the voltage across the current-sensing resistors in the previous example. Instead of boosting the gain, resistor dividers lower the sense voltage to levels that a small signal amplifier can handle. The integrator's (X3) time constant is faster to provide the frequency response necessary for audio applications. The SA02 audio-speaker driver has a -10V/V voltage gain and a $10-\mathrm{kHz}$ power bandwidth. Figure $9 b$ shows the circuit's input and output waveforms. Note that it takes about $50 \mu \mathrm{sec}$ for the output's sine wave to stabilize.

The SA02 has many bells and whistles, such as thermal sensing and external-logic shutdown, that the generic model does not implement. A design engineer can easily analyze these independent features with a paper and pencil. However, this simple yet versatile model makes it easy to model the main PWM function when manual analysis of this feed-back-control circuit becomes unmanageable.

FIGURE 9 (B).

FIGURE 9 (A). A similar model using specifications from the SA02 amplifier is part of a constant-voltage feedback amplifier (a). The output sine wave takes about $50 \mu \mathrm{sec}$ to stabilize (b).

